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FIR and IIR Synapses, a New Neural Network Architecture
for Time Series Modeling
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A new neural network architecture involving either local feedforward
global feedforward, and/or local recurrent global feedforward struc-
ture is proposed. A learning rule minimizing 2 mean square error
criterion is derived. The performance of this algorithm (local recur-
rent global feedforward architecture) is compared with a local-feed-
forward global-feedforward architecture. It is shown that the local-
recurrent global-feedforward model performs better than the local-
feedforward global-feedforward model.

1 Intreduction

A popular class of neural network architecture, in particular, a multilayer
perceptron (MLP) may be considered as providing a nonlinear mapping
between an input vector, and a corresponding output vector (Lippman
1987). From a set of input and output vectors, an MLP with a given
number of hidden layer neurons may be trained by minimizing a least
mean square (LMS) cost criterion.

Most work in this area has been devoted to obtaining this nonlinear
mapping in a static setting, that is, the input—output pairs are indepen-
dent of one another. Many practical problems may be modeled by such
static models, for example, the XOR problem and handwritten character
recognition.

On the other hand, many practical problems such as time series fore-
casting and control plant modeling require a dynamic setting, that is, the
current output depends on previous inputs and outputs. There have been
a number of attempts to extend the MLP architecture to encompass this
class of problems. For example, Lapedes and Farber (1987) used an MLP
architecture with linear output units, rather than nonlinear output units.
The linear output units allow the output values to be real rather than
discrete as in classification problems. Waibel et al. (1989) used a time de-
lay neural network architecture that involves successive delayed inputs
to each neuron. All these attempts use only a feedforward architecture,
that is, no feedback from later layers to previous layers. There are other
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approaches that involve feedback from either the hidden layer or from
the output layer to the input layer (Jordan 1988). This class of network is
known broadly as recurrent networks. In one way or the other, all these
approaches attempt to incorporate some kind of contextual information
(in our case, the dynamic nature of the problem is the context required)
in a neural network structire. However, these are not the only neural
network architectures that can incorporate contextual information.

In this paper we will consider a class of network that may be con-
sidered as intermediate between a (global) feedforward architecture and
a {global) recurrent architecture. We introduce architectures that may
have local recurrent nature, but have an overall global feedforward con-
struction. Our contribution is the derivation of a training algorithm that
is based on a linear adaptive filtering theory. The work presented here
is similar to Robinson’s (1989), except that in his network the feedback
occurs globally, whereas in ours the feedback is local to each synapse.
It is shown by simulation that networks employing this local-feedback
architecture perform better than those with only local feedforward char-
acteristics.

The structure of the paper is as follows: in Section 2, a network archi-
tecture is introduced. In Sections 3 and 4 training algorithms for the FIR
synapse case and IIR synapse case, respectively, are derived (the nomen-
clature will be clarified in Section 2). In Section 5, the performance of an
IIR synapse case is compared against an FIR synapse.

2 A Network Architecture

In a traditional MLP architecture, each synapse is considered as having
a constant weight. Using the same methods as introduced by Lapedes
and Farber (1987), the dependency of current outputs on previous inputs
may be modeled using the following synaptic model.

M
y(t) =3 _bz(t —j) 2.1

/=0

where y(t) is the synapse output at time t, z(t — j) is a delayed input to
the synapse, and b;, i = 0,1.2,..., M are constants.

This synaptic weight is the same as a finite impulse response filter
(FIR) filter in digital filter theory. As a result, we will denote this synapse
an FIR synapse (Fig. 1).

On the other hand, the output may be dependent on both the previous
inputs and outputs. In this case, we have the following model. Let g~/
x(t) = x2(t — J). Then
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Figure 1: An FIR synapse.

i)

Figure 2: An IIR synapse.

This is called an infinite inpulse response (IIR) synapse (Fig. 2).

An MLP may use FIR synapses, IIR synapses, or both. Note that
this type of network is still globally feedforward in nature, in that it
has a global feedforward structure, with possibly local recurrent features
{for IIR synapses). Thus, in the FIR synapse case, we will have a local-
feedforward global feedforward architecture, while in the IIR synapse
case, we will have a local-recurrent global feedforward architecture. It
is obvious that a more complicated structure will be one involving both
FIR synapses and IIR synapses. Figure 3 shows the neuron structure.

Consider an L + 1 layer network. Each layer consists of N, neurons.
Each neuron i has an output at time ¢ as z/(t), where [ is the index for the
layer, I = 0 denotes the input layer, and I = L denotes the output layer.
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Figure 3: A neuron showing IR synapses.

An MLP with FIR synapses can be modeled as follows:
£ = f[HF )]
N
B =3B g
i=1
where
M
Bl = XH'e)
=0
/2 e—n/Z

ex/? +g-af2

k= 1,2,.... Ni41 (output layer index)
I = 01.2...L
number of delayed inputs to a neuron

X
[

Yli=n, = bias

(2.3)

(2.4)

(2.5)

(2.6)

Q2.7
2.8
(2.9)
(2.10)

Note that we have made the simplifying assumption that each neuron
receives the same number M, delayed inputs from the previous layer.
This can be made to vary for each neuron. It is not used here since it

would add unnecessary burden to the notation.
An MLP with IIR synapses can be modeled as follows:

2 = flgro)

X N, Bl+1(qu)
+1 _ ik !
x’c (t) - ;Ai;.](q_l)zl(r)

2.11)

2.12)
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where
Ay =1- Za:,;‘ - (2.13)
j=1

denotes the local feedback in each synapse. All the other notation is the
same as for the FIR case.

3 Derivation of a Training Algorithm for an FIR MLP
Let the instantaneous error be
1 N N
=52 €t = Z [wet) - 2]} (3.1
k=1 k=1

where y,(t) is the desired output at time ¢.
The weight changes can be adjusted using a simple gradient method

_ OE(t)
Abj(t) = iz D 1) G2
Bt +1) = big(t) + Abjy(®) 3.3)
The learning rule for the output layer weights is
OE(t)
Ablk]( ) _]’abf‘iq(‘) (34)
= of [HO]2 - ety 1<j<M 3.5)

The learning rule for the hidden layers can be obtained using a chain
rule as

Abyiry —’I% (3.6)
= bzl (t’— i) 3.7)
where
8k(t) = enf [iho] 3.8)
& = %zs,’,“uw“%[ (1] 3.9)
p=t

These equations define an LMS weight adjusting algorithm. It is quite
easy to modify the gradient learning rule to incorporate a momentum
term.
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Notice that while the FIR MLP model is nonlinear, the weight updat-
ing rules are linear in the unknown parameters. This property implies
that the weight updating rules will converge to a minimum, not necessar-
ily the global minimum, in the mean square error surface of the weight
space.

The derived updating rules for the FIR case are not new, but are given
for completeness, and serve as a background for the derivation of the IR
synapse to be considered in the next section.

4 Derivation of a Training Algorithm for an IIR MLP

A training algorithm for an MLP consisting of IIR synapses can be ob-
tained by minimizing the cost criterion 3.1.
For the output layer, we have

JE(t)

L
_ 1
Aby (1) ”(')b,Lk’(t) 4.1)
. b=tep .
= et [0 %ﬁ 1<j<M 42)
For the _\afk,(t) parameter,
] _ . OEQ)
Aanh(’) - 7/0‘2';}’(!) (43)
_ OE(t) 0xi(t)
" DR dak (1) @4
¢ (- BIL -1 ~f = :
= we0f [50] o (q.ﬁ(;;ﬁ 2;’ o) (4.5)
where
M
Bu@ M-y = 3 bylg7) (4.6)
=0
N
Ax@ M-, = a7 = > ag(q") 4.7
=1
For the hidden layers we have
OE(t)
= — 4.
Ab{k;(t) HObf,q(!) (4.8)
-l
= ucﬁim (4.9)
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where
Niy 1+1

b
sty = 25'“ A,H*"’ f[r' Q) (4.10)

The updating rule for aj(t) is given by

! OE(t)
Aay, () -y Dal (1) (4.11)
! 5:((‘77] |f -
= p}ék(t)Ajk(q_l)A 1)" y =) 4.12)

where 4} is defined in 4.10.

Equations 4.2—4.12 form the complete set of updating rules for the IIR
MLP. It is quite simple to incorporate a momentum term in the gradient
update rules. Note that in contradistinction with the FIR MLP case, 3.7-
4.8 are nonlinear in the parameters. Hence, there is no guarantee that
the training algorithm will converge. Indeed, from our own experience,
for unsuitably large chosen gain s, the algorithm may explode. The
problem of instability that is normally present with linear IIR filters does
not arise in the same way with the model presented here. The maximum
output from each neuron is limited by the sigmoidal function, thus giving
a bounded output (the weights should also be bounded). The usual
stability monitoring devices such as pole reflection and weight freezing
used in the linear case are therefore not necessary for this model.

5 Simulations

We tested the performance of the FIR MLP and IIR MLP on the following
plant

—sin o Bi{q7h) ]}
y(t) = sin { [1 “arlg1) = az(q“z)x(” G.1

where x(¢) is a zero mean white noise source, low-pass filtered with a
cut-off frequency of 7 rad/sec, with oy = 0.8227, a; = —0.9025, and
B = 0.99. These parameters are chosen to highlight the dynamics of the
system and its nonlinearity.

For the FIR MLP, we have chosen L = 2, N; =6, (i =1), N, = 1. At
the hidden layer we selected M = 11 and n = 0.0001, and for the output
layer M = 1 and n = 0.005. Zero bias was used throughout.

The simulation was run for 5 x 10° data points. After training we
tested the learned weights on a new data set of 1000 points. The mean
square prediction error for the test set was 0.0664 and the variance was
0.0082. The results of the simulation are shown in Figures 4 and 5. It is
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Figure 4: The plant output, and the response from an FIR MLP with architecture
described in the text. s

observed that the plant and model output, while following one another,
appear to have significant differences at points; this is indicated more
clearly in Figure 5.

We have also used the IIR network to model the plant given by 5.1.
The architecture of the model is the same as for the FIR case, except that
M =5 and N = 6 in the hidden layer, and in the output layer N = 1 with
af,q. =0V ik j(l=2). In this case the mean square error over the test set
was 0.0038 and the variance was 0.000012. The results of the simulation
are shown in Figures 6 and 7. In Figure 6, it is observed that the response
of the IIR MLP is much closer to the plant. This is revealed in the error
plot of Figure 7.

6 Conclusions

We have investigated a class of neural networks which has a globally
feedforward architecture with locally recurrent nature. A training algo-
rithm has been derived which can be seen as an extension of the FIR
MLP and the more widely used static MLP. It is shown, by simulation,
that the IIR MLP is a better model than the FIR MLP for modeling a
nonlinear plant.

It is almost trivial to modify an algorithm to a recursive second-
order gradient algorithm (Kalman type filter) used in traditional adaptive
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Figure 5: The error between the plant output, and the response of the FIR MLP.
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Figure 6: The plant output, and the response from an IIR MLP with architecture

described in the text.
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Figure 7: The error between the plant cutput, and the response of the IR MLP.

identification or control literature. As indicated, our algorithm is a re-
cursive first-order gradient algorithm. While there is a certain advantage
to use a Kalman filter type second-order gradient algorithm, the added
computational complexity slows the computation considerably. Hence, in
the work reported here we only show the performance of the first-order
gradient method.

It would be interesting to compare the performance of the IIR MLP
model with a fully recurrent model. This will be presented in future
work.
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