Research
   Home
   Computational Finance
   ICA
   Hybrid Systems
   Recurrent Networks
   Support Vector Machines
   Input Variable Selection
   Classification Methods
   

Publications
   Book Chapters
   Journal Papers
   Conference Papers
   BibTex
  

Software
   Windale Technologies
  

Conferences
   NIPS*96
   NIPS*95
   NIPS*94


Information
   Biography
   Contact Me
  
View Andrew Back's profile on LinkedIn

   Publications

Papers

Book Chapters

  1. A.D. Back, "Independent Component Analysis" in Applied Intelligent Systems: New Directions, Series: Studies in Fuzziness and Soft Computing, J. Fulcher and L. Jain (Eds), Springer-Verlag, Chapter 3, 2004.

  2. A.D. Back, "Radial Basis Functions" in Handbook of Neural Network Signal Processing, Yu Hen Hu and Jenq-Neng Hwang (Eds), CRC Press, Chapter 3, 2002.

  3. A.C. Tsoi, A.D. Back, M. Mozer and J. Principe, "Memory Kernels",  in A Field Guide to Dynamical Recurrent Networks, John F. Kolen and Stefan C. Kremer (Eds), Wiley-IEEE Press, 2001. 

  4. S. Lawrence, I. Burns, A.D. Back, A.C. Tsoi and C. Lee Giles ``Neural Network Classification and Prior Class Probabilities, Tricks of the Trade, Lecture Notes in Computer Science State-of-the-Art Surveys, G. Orr, K-R. Mueller, R. Caruana (Eds), Springer-Verlag. pp. 299-314, 1998. (Postscript file)

Journal Papers

  1. A.D. Back. D. Angus and J. Wiles, “ Determining the Number of Samples Required to Estimate Entropy in Natural Sequences”, IEEE Tran. on Information Theory, to appear, 2019. 
    (Postscript file, PDF File)

  2. T. Trappenberg, J. Ouyang and A.D. Back, “Input Variable Selection: Mutual Information and Linear Mixing Measures”, IEEE Transactions on Knowledge & Data Engineering, Vol. 18, No. 1, pp. 37-46, 2006. 
    (PDF File)

  3. A.D. Back and T. Chen, “Universal Approximation of Multiple Nonlinear Operators by Neural Networks”, Neural Computation, Vol. 14 , Issue 11, pp. 2561-2566, November, 2002. 
    (Postscript file, PDF File)

  4. A.D. Back and T.P Trappenberg, “Selecting Inputs For Modeling Using Normalized Higher Order Statistics and Independent Component Analysis”, IEEE Transactions in Neural Networks, Vol. 12, No. 3, pp. 612-617, 2001. 
    (PDF File)

  5. N. Iannella and A.D. Back, "A Spiking Neural Network Architecture for Nonlinear Function Approximation", Neural Networks, Special Issue, Vol 14, No. 6, pp. 922-931, 2001.

  6. A.D. Back, B.G. Horne, A.C. Tsoi and C. Lee Giles, “Alternative Discrete-Time Operators: An Algorithm for Optimal Selection of Parameters”, IEEE Trans. on Signal Processing, Vol. 47, No. 9, pp. 2612-2615, Sep. 1999. 
    (Read online, Postscript file, PDF file)

  7. A.D. Back and A.S. Weigend, “A first application of independent component analysis to extracting structure from stock returns”, Int. Journal of Neural Systems, Vol. 8, No. 4, pp. 473-484, Aug. 1997. 
    (Read online, Postscript file, PDF file)

  8. A.D. Back and A.C. Tsoi, “A low sensitivity recurrent neural network”, Neural Computation, Vol. 10, No. 1, pp. 165-188, 1998. (Postscript file)

  9. S. Lawrence, A.D. Back, A.C. Tsoi and C. Lee Giles , “On the distribution of performance from multiple neural network trials”, IEEE Trans. on Neural Networks, Vol. 8, No. 6, pp. 1507-1517, 1998.

  10. S. Lawrence, C. Lee Giles, A.C. Tsoi and A.D. Back, “Face recognition: a hybrid neural network approach”, IEEE Trans. on Neural Networks, Vol 8, No. 1, pp. 98-113, 1997. 
    (Postscript file)


  11. A.C. Tsoi and A.D. Back, “Discrete-time recurrent neural network architectures: a unifying review”, Neurocomputing, Vol. 15, No. 3&4, pp. 183-223, 1997.

  12. A.D. Back and A.C. Tsoi, “Nonlinear system identification using discrete Laguerre functions”, Journal of Systems Engineering, Vol 6, No. 3, pp. 194-207, 1996. 
    (Postscript file)


  13. A.C. Tsoi and A.D. Back, “Static and dynamic preprocessing methods in neural networks”, Engineering Applications of Artificial Intelligence, Volume: 8, Issue: 6, pp. 633-642, December, 1995.

  14. A.C. Tsoi and A.D. Back, “Locally recurrent globally feedforward networks, a critical review of architectures”, IEEE Trans. Neural Networks, Vol. 5, No. 3, pp. 229-239, 1994.

  15. A.D. Back and A.C. Tsoi, “A simplified gradient algorithm for IIR synapse multilayer perceptrons”, Neural Computation, Vol 5, No. 3, pp. 456-462, 1993.

  16. A.D. Back and A.C. Tsoi, “An adaptive lattice architecture for dynamic multilayer perceptrons”, Neural Computation, Vol 4, No. 6, pp. 922-931, 1992.

  17. A.D. Back and A.C. Tsoi, “FIR and IIR synapses, a new neural network architecture for time series modelling”, Neural Computation, Vol 3, No 3, pp. 375-385, 1991. 
    (PDF File) Note: You will need Adobe Acrobat Reader 5 to view this file.

Conference Papers

  1. T.P. Trappenberg and A.D. Back, "A Classification Scheme for Applications with Ambiguous Data", Proc. of IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN'00, Como, Italy, 2000.
    (Abstract)

  2. A.D. Back and T.P. Trappenberg, “Input variable selection using independent component analysis”, Proc. of International Joint Conference on Neural Networks IJCNN'99, Washington, 1999. 
    (Postscript file
    , PDF file)

  3. N. Iannella and A.D.Back, "A spiking neural network architecture for nonlinear function approximation", Neural Networks for Signal Processing 9, Proc. 1999 IEEE Signal Processing Society Workshop, THOR Center for Neuroinformatics, Madison, Wisconsin, U.S.A., IEEE, edited by Jan Larsen, Yu-Hen Hu, Elizabeth Wilson, Scott Doulas, New York, August 1999, pp. 139-146.

  4. A.D. Back and A. Cichocki, “Input variable selection using independent component analysis and higher order statistics”, Proceeding of the First International Workshop on Independent Component Analysis and Signal Separation, ICA'99, Aussois, France, January 11-15, 1999, pp. 203-208.

  5. A.D. Back and A.S. Weigend, “Discovering structure in finance using independent component analysis”, Proc. of Computational Finance 97, 1998. 
    (Postscript file
    , PDF file)

  6. A.D. Back, “Multiple and time-varying dynamic modelling capabilities of recurrent neural networks”, Neural Networks for Signal Processing 7, IEEE Press, 1997. 
    (Postscript file)


  7. A.D. Back, B.G. Horne, A.C. Tsoi and C.L. Giles, “Low sensitivity time delay neural networks with cascade form structure”, Neural Networks for Signal Processing 7, IEEE Press, 1997. 
    (Postscript file)


  8. A.D. Back and A.C. Cichocki, "Blind source separation and deconvolution of fast sampled signals", Proc of 1997 Int Conf on Neural Information Processing, Ed. N. Kasabov, ICONIP-97, New Zealand, Springer Nov. 1997, Vol. I, pp. 637-641. 
    (Postscript file)
     

  9. A.C. Cichocki, B. Orsier, A.D. Back, S. Amari, “On-line adaptive algorithms in non-stationary environments using a modified conjugate gradient approach”, Neural Networks for Signal Processing 7, IEEE Press, 1997, pp. 316-325.

  10. A.D. Back and T.P. Chen, "Approximation of hybrid systems by neural networks", Proc of 1997 Int Conf on Neural Information Processing, Springer-Verlag, pp. 326-329, 1997. 1997. 
    (Postscript file)


  11. S. Lawrence, A.D. Back, A.C. Tsoi, and C.L. Giles, “The Gamma MLP - using multiple temporal resolutions for improved classification”, Neural Networks for Signal Processing 7, IEEE Press, 1997.

  12. A.D. Back and A.C. Tsoi, “A cascade neural network model with nonlinear poles and zeros”, Proc of 1996 Int Conf on Neural Information Processing, Vol. 1, pp. 486-491, 1996. 
    (Postscript file)


  13. A.D. Back and A.C. Tsoi, “Aspects of adaptive learning algorithms for FIR feedforward networks”, Proc of 1996 Int Conf on Neural Information Processing, Vol. 2, pp. 1311-1316, 1996. 
    (Postscript file)


  14. A.D. Back and A.C. Tsoi, “A new robust recurrent neural network structure”, ACNN96 Proc. Seventh Aust Conf on Neural Networks, Canberra, pp. 138-143, 1996.

  15. S. Lawrence, A.C. Tsoi and A.D. Back, “The Gamma MLP for speech phoneme recognition”, Advances in Neural Information Processing Systems 8, MIT Press, pp. 785-791, 1996.

  16. S. Lawrence, A.C. Tsoi and A.D. Back, “Function approximation with neural networks and local methods: bias, variance and smoothness”, ACNN96 Proc. Seventh Aust Conf on Neural Networks, Canberra, pp. 16-21, 1996.

  17. S. Tan, A.C. Tsoi, A.D. Back and A-K. Chan, "A new worst-case training algorithm for RBF neural networks", Proc. of 1996 Int Conf. on Neural Information Processing, Hong Kong, 1996, 174-179.

  18. A.D. Back and A.C. Tsoi, “A comparison of discrete-time operator models for nonlinear system identification”, Advances in Neural Information Processing Systems 7, MIT Press, pp. 883-890, 1995. 
    (Postscript file)


  19. A.D. Back and A.C. Tsoi, “Constrained pole-zero filters as discrete-time operators for system approximation”, Neural Networks for Signal Processing 5, IEEE Press, pp. 191-200, 1995. 
    (Postscript file)


  20. A.D. Back and A.C. Tsoi, “Identification of nonlinear processes using Laguerre functions”, Proc. Int. Conf. on Engineering Applications of Neural Networks, A.B. Bulsari and S. Kallio (Eds), 1995. 
    (Postscript file)


  21. A.D. Back and A.C. Tsoi, “Preprocessing in models for time-series prediction and estimation”, Machines that Learn (Neural Networks for Computing), April 4-7, Snowbird, Utah, 1995.

  22. A.C. Tsoi and A.D. Back, “Orthogonal polynomials and neural network models”, Invited Paper, International Symposium on Artificial Neural Networks, Hsinchu, Taiwan, 1995.

  23. A.D. Back, E.A. Wan, S. Lawrence and A.C. Tsoi, “A unifying view of some training algorithms for multilayer perceptrons with FIR filter synapses”, Neural Networks for Signal Processing 4, IEEE Press, pp. 146-154, 1994. 
    (Postscript file)


  24. A.D. Back and A.C. Tsoi, “Blind deconvolution of signals using a complex recurrent network”, Neural Networks for Signal Processing 4, IEEE Press, pp. 565-574, 1994. 
    (Postscript file)


  25. A.D. Back and A.C. Tsoi, “Alternative discrete-time operators in neural networks for nonlinear prediction”, Proc. Second Australian and New Zealand Conference on Intelligent Information Systems, J. Sitte et. al. (Eds), IEEE Press, pp. 14-17, 1994.

  26. A.D. Back and A.C. Tsoi, “On the backpropagation algorithm: paralysis in multilayer perceptrons”, Proceedings of the Fifth Australian Conference on Neural Networks, pp. 102-104, 1994. 
    (Postscript file)


  27. A.C.Tsoi and A.D. Back, “Static and dynamic preprocessing methods in neural networks”, Keynote Paper in IFAC Workshop on Emerging Intelligent Control Techniques, Hong Kong, 1994.

  28. A.C. Tsoi, D. Shrimpton, B. Watson and A.D. Back, “Application of artificial neural network techniques to speaker verification”, Proc. ESCA Workshop on Automatic Speech Recognition, 1994.

  29. A.D. Back and A.C. Tsoi, “Nonlinear system identification using multilayer perceptrons with locally recurrent synaptic structure”, Neural Networks for Signal Processing 2, IEEE Press, pp. 444-453, 1992. 
    (Postscript file)


  30. A.D. Back and A.C. Tsoi, “Nonlinear adaptive control using an IIR MLP”, ACNN92 Proc. of the Third Australian Conf on Neural Networks, Canberra, pp. 155-158, 1992.

  31. A.D. Back and A.C. Tsoi, “Modelling robustness of FIR and IIR synapse multilayer perceptrons”, ACNN92 Proc. of the Third Australian Conference on Neural Networks, Canberra, pp. 72-76, 1992.

  32. A.D. Back and A.C. Tsoi, “Internal representation of data in multilayer perceptrons with IIR synapses”, ISCAS92 Proc. IEEE Intern Symposium on Circuits and Systems, San Diego, IEEE Press, New York, 1992.

  33. A.D. Back and A.C. Tsoi “Representational capabilities of multilayer feedforward networks with time-delay synapses”, Proc. of American ControlConf, pp. 3064-3065, Chicago, 1992.

  34. A.D. Back and A.C. Tsoi, “Stabilisation properties of multilayer feedforward networks with time-delay synapses”, Artificial Neural Networks, I. Aleksander and J. Taylor (Eds), Elsevier Science Publishers B.V. (North Holland), Vol. 2, pp. 1113-1116, 1992.

  35. A.D. Back and A.C. Tsoi, “Analysis of hidden layer weights in a dynamic locally recurrent network”, Artificial Neural Networks, Elsevier Science Publishers B.V., pp. 961-966, 1991.

  36. A.D. Back and A.C. Tsoi, “IIR neural networks for time series modelling”, ACNN91 Proc. of the Second Australian Conference on Neural Networks, pp. 98-101, 1991.

  37. A.D. Back and A.C. Tsoi, “An adaptive lattice architecture for dynamic multilayer perceptrons”, Proc Int AMSE Conf Neural Networks, San Diego, pp. 141-150, 1991.

  38. A.D. Back and A.C. Tsoi “A time series modelling methodology using FIR and IIR synapses”, Proc. Workshop on Neural Networks for Stat. and Econ. Data, F. Murtagh (Ed.), pp. 187-194, 1990.

  39. A.D. Back and T. Downs, “Application of neural networks to control systems”, ACNN90 Proc. First Australian Conference on Neural Networks, 1990.

  40. A.D. Back and T. Downs, “Nonlinear dynamic neural networks for temporal information processing”, Proc. of IEAust Conference on Computing Systems and Information Technology, 1989.

Technical Reports

  1. A.D. Back, A.C. Tsoi, B.G. Horne and C.L. Giles, Alternative discrete-time operators and their application to nonlinear models, Technical Report CS-TR-3738 and UMIACS-TR-97-03, Institute for Advanced Computer Studies, University of Maryland, 1997. 
    (Postscript file)




 

 

 

Home   Research  Contact Me  Feedback  Publications

Copyright © 1989-2008 Andrew Back. All Rights Reserved.